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Abstract. In a recent experiment the progressive decoherence of a mesoscopic superposition of two coherent
field states in a high-Q cavity, known as Schrödinger cat state, has been measured for the first time [Brune
et al., Phys. Rev. Lett. 77, 4887 (1996)]. Here, the full master equation governing the coupled dissipative
dynamics of the atom-field system studied in the experiment is formulated and solved numerically for
the experimental parameters. The model simulated avoids the approximations underlying an analytically
solvable model which is based on a harmonic expansion of the energies of the dressed atomic states and on
a treatment of their dynamics within the adiabatic approximation. In particular, the numerical simulations
reveal that the coupling of the cavity field mode to its environment causes important decoherence effects
already during the initial preparation phase of the Schrödinger cat state. This phenomenon is investigated
in detail with the help of a measure for the purity of states. Moreover, the Hilbert-Schmidt distance of
the intended target state, the Schrödinger cat, to the state that is actually prepared in the experiment is
determined.

PACS. 32.80.-t Photon interactions with atoms – 03.65.Ta Foundations of quantum mechanics;
measurement theory – 42.50.-p Quantum optics

1 Introduction

The emergence of classical behaviour is one of the most
fundamental problems in quantum mechanics. In prin-
ciple, due to its linear structure quantum mechanics
allows the existence of superpositions of macroscopi-
cally distinguishable states which would arise, e.g., in
measurement-like processes as a direct consequence of the
unitary Schrödinger dynamics. However, such states are
(of course) never observed. Schrödinger himself empha-
sized this problem in his famous Gedankenexperiment of
a simultaneously dead and alive cat [1].

A well-established approach to the decoherence prob-
lem is based on the idea that a macroscopic system, like
a measurement device, is never isolated from its environ-
ment [2,3]. Taking this as a starting point one can derive
an equation of motion, e.g. for the reduced density oper-
ator, which describes the dynamics of the system under
consideration. In general, these equations lead to a non-
unitary evolution of the density operator and it has been
shown in a variety of examples how classical properties can
emerge in such situations (see [2] and references therein).

In addition to these theoretical considerations, great
experimental progress has been achieved in the last few
years in order to enlighten the phenomenon of decoher-
ence. For example, it was possible to prepare a superpo-
sition of two motional states of the center of mass coor-
dinate of a Be+ ion stored in the harmonic potential of
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a Paul-trap [4] and to measure its decoherence [5]. An-
other famous experiment, lying in the domain of cavity
quantum electrodynamics, creates a superposition of two
(mesoscopic) coherent field states in a superconducting
microwave cavity [6]. In this experiment the progressive
decoherence of such a Schrödinger cat-type state has been
observed for the first time.

In theoretical and experimental considerations it is
sometimes assumed that a mesoscopic or macroscopic su-
perposition is prepared and that then the coupling of the
system to its environment destroys the coherence of the
superposition. This is of course an idealization. Even if
the preparation time is very small one has to pay atten-
tion to the fact that decoherence time scales are mostly
extremely small, too (see, e.g. [7–9]). In more realistic
treatments the coupling of a system to its environment
is taken into account already during the preparation pro-
cess [10–14].

Following this idea, the subject of the present work is
the examination of decoherence effects during the prepa-
ration process by means of the example of the above men-
tioned experiment [6]. In this experiment a first atom, pre-
pared in a superposition of two circular Rydberg states,
interacts non-resonantly with the mesoscopic microwave
field in a high-Q cavity leading to an (entangled) super-
position of two coherent field states with different phase.
One can interpret this process as an emulation of an ideal
measurement in which coherent field states with different
phases act as (mesoscopic) pointer states indicating the



378 The European Physical Journal D

state of a microscopic object (the atom). If the measured
object is in a superposition, this superposition is trans-
fered to the measurement apparatus the state of which
becomes a Schrödinger cat of different pointer states. Due
to the interaction of the apparatus with its environment
this state will decohere on a small time scale. Information
about the progress of this decoherence is then gained by a
second “probe” atom which crosses the apparatus after a
variable delay time and which is, like the first atom, finally
measured in two field ionisation detectors.

In this paper we investigate the decoherence during
the preparation process of the experiment with the help
of the complete quantum Markovian master equation that
governs the coupled atom-field dynamics. In reference [6]
the experimental data were compared with the theoreti-
cal predictions of a simplified analytical model which in-
volves several approximations. These approximations are
not necessary within our model. Especially, the coupling
of the field to the environment during the interaction of
field and atom can be taken into account. However, it is
no longer possible to solve the equations of motion ana-
lytically. We therefore solve the full master equation nu-
merically. These simulations allow a detailed look at the
nascency of the Schrödinger cat state. It turns out that
decoherence takes place already during the preparation
(i.e., during the measurement process) of the mesoscopic
superposition in an appreciable way although the interac-
tion time of atom and field is small and the coupling of
the field to the environment is weak. In a way, this is not
surprising since decoherence time scales are often much
smaller than relaxation time scales.

This article is structured as follows. In Section 2 we
give a short description of the experiment. Section 3.1
presents the model which is used to perform the numerical
calculations and Section 3.2 briefly reviews the approxima-
tive model which leads to an analytical description of the
systems dynamics. In particular, we discuss the conditions
which allow the application of this model. In Section 4 we
present and discuss the results of numerical simulations
using the Wigner function and a measure for the purity
and for the distance of states. Furthermore the quantity
which was actually measured in the experiment is pre-
sented.

2 A brief description of the experiment

In this section we give a short review of the experiment of
Brune et al. [6]. For more technical details see also [15].

Rubidium atoms are excited into a circular Rydberg
state (denoted here as |e〉) with principal quantum num-
ber n = 51 by a pulsed process and cross a sequence of res-
onators R1, C and R2 (see Fig. 1). Ideally, only one atom
with an approximately sharp defined center of mass ve-
locity (v = 400 m/s) is prepared in this state and also the
position r of the Rydberg atoms is suitably well-defined
such that it is possible to speak of single Rydberg atoms
crossing the setup. A pair of such pulses is generated with
a separation ranging from 30µs to 250µs. Within the ex-
periment there is also a second, lower lying Rydberg state

Time
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C
R2

De=g
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T
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Fig. 1. Schematic setup of the experiment performed by Brune
et al. The atoms A1 and A2 move along the dashed horizontal
line with a time delay T and cross the resonators R1, C, R2 and
detectors De and Dg. The times of flight between and within
the different components are also indicated.
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Fig. 2. Two level scheme displaying the atomic transition fre-
quency ω, the frequency ν of the field in the Fabry-Pérot cavity
C and the frequency ωR of the fields in the resonators R1 and
R2. The frequency ν is detuned by an amount ∆ from the
atomic frequency ω.

|g〉 with principal quantum number n = 50. These states
have a very long radiative lifetime (γ−1

at = 30 ms), much
longer than the time an atom needs to cross the whole
setup (≈ 500µs) and a very strong coupling to radiation.
The internal degrees of freedom can therefore be described
as an atomic two level system (see Fig. 2) with a transition
frequency in the microwave domain (ω/2π = 50.099 kHz).

The resonators R1 and R2, which constitute the exper-
imental setup of the Ramsey method of separated oscillat-
ing fields [16], contain a classical microwave field. The field
strength is chosen in such a way that the atoms undergo
a π/2-pulse while crossing these resonators. The high-Q
Fabry-Pérot cavity C, which stores a small coherent field
|α〉 is made up of two superconducting niobium mirrors
leading to a mean photon lifetime of TR = 160µs. The ge-
ometry of the relevant TEM900-mode provides a smooth
variation of the coupling between an atom and the field,

Ω(r) = Ω0 exp
[
− r

2

w2
0

]
, (1)

along the beam axis with a mode waist w0 = 5.9 mm and
maximum coupling Ω0/2π = 24 kHz at cavity center. The
cavity C is slightly detuned by an amount ∆ = ω − ν
from the atomic transition frequency. After passing the
resonators the internal states of the atoms are detected
by two field ionisation detectors De and Dg.
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As we will see in the next section the first one of a
pair of atoms prepares a superposition of two mesoscopic
field states. This state will decohere on a very small time
scale. The progress of the decoherence is read out (after a
variable delay time T ) by the second atom through mea-
surement of the quantity

η = Wee −Wge. (2)

Here, Wge is the probability of measuring the second atom
in the state |e〉 under the condition that the first one was
detected in |g〉, while Wee is the probability of measuring
the second atom in the state |e〉 under the condition that
the first atom was found in |e〉. Within an approximative
model the information in which the first atom was mea-
sured is stored only in the off-diagonal elements of the
superposition’s density matrix. If they vanish, the quan-
tity η vanishes on the same time scale.

3 The model

Let us now develop the theoretical description of the dy-
namics of the experimental system. To this end, we intro-
duce an exact model which is the basis of the numerical
calculations performed in Section 4. The relation to an
approximative model which permits an analytical descrip-
tion of the systems dynamics will also be discussed.

3.1 The full master equation for the atom-field system

The total Hilbert space of the system takes the form

H = HA1 ⊗HA2 ⊗HF ⊗HB, (3)

where HA1 and HA2 are associated with the internal de-
grees of freedom of the atoms, HF is the Hilbert space of
the field in the cavity C, and HB describes the environ-
ment which interacts with the field leading to the effect
of decoherence. As we already noticed, spontaneous emis-
sions of the atoms may be neglected here since the decay
time is about 30 ms which is much larger than any other
time scale in the experiment.

The quantum Markovian master equation which de-
scribes the interaction of an atom and the field in the
central cavity takes the following form in the interaction
picture

ρ̇12F(t) = − i
~

[H12F(t), ρ12F(t)] + LFρ12F(t), (4)

where ρ12F denotes the density operator of atom 1, atom 2
and the radiation field in the cavity C. The superoperator
LF is given by

LFρ12F = γ
(
bρ12Fb

† − 1
2
b†bρ12F −

1
2
ρ12Fb

†b
)

(5)

with relaxation rate γ = 1/TR and the coherent part of
equation (4) is described by the Jaynes-Cummings type

Hamiltonian

H12F(t) = ~Ω(t)
(
ei∆teiλ1bσ†1 + e−i∆te−iλ1b†σ1

)
+ ~Ω(t− T )

(
ei∆teiλ2bσ†2 + e−i∆te−iλ2b†σ2

)
. (6)

The subscripts 1, 2 and F indicate on which space the
operators are defined, i.e. the Hilbert space of atom 1,
of atom 2, and of the radiation field F , respectively. An
essential assumption which is made here is that the atoms
are not interacting simultaneously with the same field, i.e.,
Ω(t)Ω(t − T ) ≈ 0, where T is the distance in time of the
two atoms (see Fig. 1). The phases λ1 and λ2 are related
by the equation

λ2 = λ1 +∆T, (7)

since the phase of the field in C changes during the delay
time T relative to the second atom. The value of λ1 is of
no relevance.

The operators b†, b denote the creation and annihila-
tion operators of the field mode and the atomic operators
are defined by

σk = |g, k〉〈e, k|,

where k = 1, 2 indicates again the space on which these
operators are defined (in the following we omit the label k
in state vectors). The environment is modeled as a collec-
tion of harmonic oscillators which interact with the field
mode via amplitude coupling. It is assumed here that the
center of mass motion of an atom can be described by a
classical uniform motion r(t) = r0 + vt leading to a time
dependent coupling function Ω(t). This assumption is jus-
tified since the kinetic energy of an atom is much larger
than the height and the depth of the optical potential
given by the eigenenergies of the Hamiltonian (6) using
the coupling function (1) (see, e.g., [17]).

The dynamics in the resonators R1 and R2 is governed
by the equation

ρ̇12F(t) = (Jk + LF) ρ12F(t) (8)

with

Jkρ12F(t) = − i
~

[Vk, ρ12F(t)] , (9)

and

Vk = −~ΩR

2

(
ei(ϕ0+εk)σk + e−i(ϕ0+εk)σ†k

)
, (10)

that is, with an appropriate choice of the Rabi frequency
ΩR the atoms undergo a π/2 pulse. The phase ϕ0 is set
equal to zero for R1 and is given by ϕ0 = (ωR − ω)δt
when the atom crosses R2, where δt is the separation of
the π/2-pulses for an atom, i.e. the time of flight between
R1 and R2 (about 230µs in the experiment). As above it
is assumed that the atoms do not interact with the field
in one of these resonators at the same time. In analogy to
equation (7) the phases ε1 and ε2 are related by

ε2 = ε1 + (ωR − ω)T, (11)
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ρ̃12F(T + τC) =

R2
Atom 2z }| {
eJ2τR

C
Atom 2z }| {
M2F(τC)

R1
Atom 2z}|{
ρ2

| {z }
“Probing” the

Schrödinger–Cat
by atom 2

eLF(T−τC)

| {z }
Field-

damping

P1

�

R2
Atom 1z }| {
eJ1τR

C
Atom 1z }| {
M1F(τC) ρF

R1
Atom 1z}|{
ρ1

	
P1

| {z }
Preparation of the
Schrödinger–Cat

by atom 1

(16)

where ε1 may be chosen arbitrarily.
Consider now a pair of atoms which traverses the cav-

ities (see Fig. 1). After excitation in the circular Rydberg
state and after the first π/2-pulse in R1 the atoms are
prepared in the state (|e〉+ |g〉)/

√
2, while the field in the

central cavity is in a coherent state |α〉. For the sake of
simplicity we will assume in the following discussion that
the distance of the atoms is smaller than the distance of
R1 and C or of C and R2 or of R2 and De, Dg. How-
ever, the distance will be assumed to be still large enough
to avoid a simultaneous interaction of both atoms with
one of the fields. In the case of a larger delay between
the atoms the discussion is completely analogous. Denot-
ing the initial state by ρ12F = ρ1ρ2ρF the time evolution
of the complete system until the detection of the second
atom reads

P2

{
(1112eLFT )P1

[
(1112eLF(τRD−T ))(11e(J2+LF)τR)

× (1112eLF(T−τR))(e(J1+LF)τR12)(1112eLF(τCR−T ))

×(11M2F(τC))(1112eLF(T−τC))(M1F(τC)12)(ρ1ρ2ρF)
]
P1

}
P2,

(12)

where 11 and 12 denote the identity operators in HA1 and
HA2 , respectively. The quantity

MkF(t)ρ12F (13)

denotes the solution of equation (4) and P1 and P2 are the
projections on the ground or on the excited state of the
atoms, representing the measurements in the detectors De

and Dg. For the definition of the time intervals τR, τC, τCR

and τRD, see Figure 1.
It is immediately clear that

[Jk,LF] = 0, (14)

since these superoperators act on different spaces. Analo-
gous conditions are fulfilled for the projection operators
and LF and for the projection operators among them-
selves. Using this fact we are now able to change the order
of expression (12) which yields

P2

{
eLF(τRD+τR+τCR)ρ̃12F(T + τC)

}
P2, (15)

where the density operator at time T + τC is given by

see equation (16) above.

For simplicity the identity operators are omitted here.
This expression allows an interpretation of the experiment
in a new way: the first atom prepares a superposition of

two mesoscopic field states. Then, after a delay T − τC,
a second atom “probes” the field, i.e. the decoherence. If
we further assume that τC � T or, to be more precise if

MkF(τC) ≈ eLFτCM′kF(τC), (17)

where M′kF(t)ρ12F(0) is the solution of equation (4) with
γ = 0, the chronology of the experiment would be ex-
actly the same as it is proposed in [18]. The damping part
in equation (15) does not have any effect on the mea-
sured quantities since the generator LF conserves the trace
(see [19] for details).

3.2 Approximative model

For the sake of completeness we give a short summary of
the basic steps which yield an approximative description of
the evolution of the system under consideration which has
an analytical solution. To this end, we will interpret the
evolution according to equation (16) and make use of the
essential condition (17), i.e., we neglect the coupling of
the field to the environment during the atom-field inter-
action.

As already mentioned, each atom undergoes a first
π/2-pulse in the resonator R1 preparing the state into

1√
2

(|e〉+ |g〉) . (18)

The interaction of the coherent field in the high-Q cavity
C with an atom can be described by the unitary transfor-
mation

|e〉|α〉 C−−−−→ eiφ|e〉|αeiφ〉,
|g〉|α〉 C−−−−→ |g〉|αe−iφ〉· (19)

The initial superposition (18) is thus transformed into the
entangled state

1√
2

(
eiφ|e, αeiφ〉+ |g, αe−iφ〉

)
. (20)

This is a superposition of two mesoscopic field states, often
denoted as Schrödinger cat.

The description of the dynamics of the system in this
way makes use of several approximations. Basically, the
atom-field interaction is described by the first or the sec-
ond term of Hamiltonian (6). The eigenenergies of this
operator in the Schrödinger picture take the form (except
for the ground state)

E±,n(t) = ~ν
(
n+

1
2

)
± 1

2
~Γn(t), (21)
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with

Γn(t) =
√
∆2 + 4Ω2(t)(n+ 1). (22)

The corresponding eigenstates |±, n; t〉 are time-de-
pendent dressed states [20], that is, time-dependent linear
combinations of the states |e, n〉 and |g, n+ 1〉, where |n〉
is a Fock state of the field oscillator. Under the condition

2
Ω(r)
|∆|
√
n+ 1� 1 (23)

the square root in equation (22) can be expanded up to
second order which yields

Ẽ±,n(t) = ~ν(n+
1
2

)± ~
2
|∆| ± ~Ω

2(t)(n+ 1)
|∆| · (24)

Assuming now that the system is governed by an adiabatic
dynamics which holds if the condition(√

2
e

Ω0

∆2

v

w0

√
n+ 1

)2

� 1 (25)

is fulfilled, the time evolution of an eigenstate can be de-
scribed with the help of the adiabatic theorem [21], which
means that the time-evolution operator U(t, t0) can be
approximated by

U(t, t0)|±, n; t0〉 = exp
(
− i
~

∫ t

t0

Ẽ±,n(τ)dτ
)
|±, n; t〉.

(26)

If we further assume that at times t0 and t the atom is
outside the cavity, i.e. r(t0) � w0 and r(t) � w0, and,
hence, Ω(t0) ≈ 0 and Ω(t) ≈ 0, the time evolution of an
eigenstate in the interaction picture is given by

UI(t, t0)|e, n〉 = eiφ(n+1)|e, n〉, (27a)

UI(t, t0)|g, n〉 = e−iφn|g, n〉, (27b)

where the phase φ takes the form

φ = −Ω
2
0

∆
tww, (28)

with an effective interaction time

tww =
∫ ∞
−∞

dt
Ω2(t)
Ω2

0

=
√
π

2
w0

v
· (29)

Applying the evolution operator (27) to the initial state
(|e, α〉+ |g, α〉)/

√
2 yields the Schrödinger cat state (20).

It should be kept in mind that this description is jus-
tified only if conditions (23, 25) are fulfilled. While condi-
tion (25) is well-satisfied for the experimental parameters
used in reference [6], condition (23) is, in general, not: for
example, using a detuning of 70 kHz and a mean photon
number of |α|2 = 3.3 (see below), the left-hand side of in-
equality (23) is found to be of the order 1. Furthermore, it
is essential for the validity of the approximate model that

the coherent dynamics dominates and that relaxation pro-
cesses can be neglected during the atom-field interaction
time tint, i.e.,

Ω0,
1
tint
� γat, γ, (30)

which is often denoted as a strong coupling and high-Q
regime. However, it should be emphasized here that the
time scale 1/γ characterizes the relaxation time of the
system. In contrast to this, the decoherence time is often
much smaller and the question arises if it is justified to
neglect this effect during the atom-field interaction.

The first atom is now subjected to the second π/2-
pulse in R2 and is finally detected in De or Dg. Depending
on the result of the measurement one gets one of the field
states

1√
N(χ)

(
|αe−iφ〉+ eiξ|αeiφ〉

)
, (31)

where N(χ) is a normalization factor and ξ = χ+ϕ0 +φ,
with χ = π if the atom was found in the ground state,
and χ = 0 if the atom was found in the excited state.
It should be stressed that in the actual experiment these
states, which are also often referred to as Schrödinger cats,
never appear but the evolution can be interpreted in a way
as if one of these states would exist.

The subsequent dynamics of the field is governed by
the equation

ρ̇F = LFρF, (32)

which has the solution [22]

ρF(T ;χ) =
1

N(χ)

{
|αeiφe−

γ
2 T 〉〈αeiφe−

γ
2 T |

+|αe−iφe−
γ
2 T 〉〈αe−iφe−

γ
2 T |

+Γ (T )eiξ|αeiφe−
γ
2 T 〉〈αe−iφe−

γ
2 T |

+Γ ∗(T )e−iξ|αe−iφe−
γ
2 T 〉〈αeiφe−

γ
2 T |
}
,(33)

where Γ (T ) is given by

Γ (T ) = e−|α|
2(1−e2iφ)(1−e−γT ). (34)

This quantity and, therefore, the off-diagonal terms of the
density operator (33) vanish in the case of sufficiently large
|α|2 and phase φ on a small time scale

tD =
1

2γ|α|2 sin2 φ
� 1/γ, (35)

leading to the decoherence of the initial superposi-
tion (31).

After a delay time T the second atom traverses the
apparatus. Taking (33) as initial state of the field the dy-
namics of the system can be described in exactly the same
way as for the first atom. Thus, it is possible to calculate
an analytical expression for the quantity

η(T ;ϕ0) = Wee(T ;ϕ0)−Wge(T ;ϕ0), (36)
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Fig. 3. Plot of the numerically calculated mean photon num-
ber 〈n(t)〉 = Tr

�
ρ1F(t)b†b

	
(solid line) during interaction of

atom and field for ∆/2π = 170 kHz with an initial photon
number of 4.2. The dashed line corresponds to 4.2e−t/TR , the
horizontal (dotted) line to a constant value of 3.3, and the
dashed-dotted line is proportional to the atom-field coupling
function Ω(t).

which is measured in the experiment [15]. Taking the av-
erage over ϕ0 one can show, employing certain conditions
which are fulfilled for the experimental parameters, that

η̄(T ) =
1

2π

∫ 2π

0

dϕ0 η(T ;ϕ0) ≈ 1
2

Re {Γ (T )} · (37)

Therefore, η̄(T ) is a direct measure for the decoherence of
the state (31).

As already mentioned the state (31) does not exist in
the experiment in this form. By contrast, the state (20)
does exist (at least within the framework of this approxi-
mative model). Taking (20) as initial state, equation (32)
can be solved, too, leading to the same decoherence be-
haviour, i.e. the off-diagonal elements of the resulting den-
sity matrix vanish on the same time scale. Hence, from
this point of view it does not matter which state exists in
reality and both pictures are equivalent.

4 Results of simulations and discussion

In this section we present and discuss the results of some
simulations of the atom-field system according to the exact
model presented in Section 3.1. To this end, equation (4) is
solved numerically. This means that we take into account
the damping of the field mode during the atom-field inter-
action. Moreover, the approximations of the analytically
solvable model, which are not very well-satisfied for the
experimental parameters used, are avoided in this way.
The only important approximation underlying our model
is the treatment of the center of mass dynamics of the
atoms as a given uniform classical motion.

The choice of initial conditions for our simulations is
illustrated in Figure 3 which shows a plot of the mean
photon number 〈n(t)〉 of the field in C during the passage
of an atom as a function of time. In the experiment the
mean photon number is measured to be approximately
〈n(tC)〉 ≈ 3.3 roughly at the time tC when the first atom is
at cavity center (i.e. tC = 40µs in Fig. 3). The interaction

time τC is taken to be 80µs (see Fig. 1). Thus, we start our
simulation at time t = 0, that is at tC − 40µs, when the
atom-field coupling is practically zero. As can be seen from
Figure 3 the initial photon number is then approximately

〈n(0)〉 = 〈n(tC)〉e40µs/TR ≈ 4.2, (38)

where TR = 160µs is the actual mean photon lifetime of
the cavity [6] if field damping is taken into account. Thus,
we take the initial condition α2 = 4.2 in all cases in which
γ 6= 0. If field damping is neglected, that is in those cases
in which we set γ = 0 during atom-field interaction, we
take the initial condition α2 = 3.3 corresponding to the
mean photon number when the atom crosses the cavity
center.

4.1 State of the field after preparation
of the Schrödinger cat

The first quantity under consideration is the state of the
field according to the scheme (16). In particular, we will
examine the state of the field after the preparation of the
Schrödinger cat, i.e. the field component of the state

P1

{
eJ1τRM1F(τC)ρ1ρF

}
P1 (39)

in the Wigner representation [23,24]. The results of the
simulation with ∆/2π = 70 kHz for vanishing and for a
finite field-environment coupling are shown in Figures 4
and 5. As it can be seen the initial state |α〉 evolved into a
superposition of two nearly separated field components in
phase space which have approximately the shape of coher-
ent states. However, the magnitude of the phase is about
φ ≈ 0.7 which is smaller than predicted by the approxima-
tive model. Here, the phase has a value close to φ ≈ 1. This
discrepancy is explained by the fact that condition (23) is
merely insufficiently fulfilled and was already mentioned
in [15]. Furthermore, due to field damping, a reduction
of the interferences has taken place already after the in-
teraction time. This phenomenon, i.e. decoherence during
the preparation of the superposition, will be examined in
Sections 4.3 and 4.4.

Figures 6 and 7 show the analogous graphs for ∆/2π =
170 kHz. In this case one expects a better legitimation of
condition (23). However, the overlap of the two field com-
ponents is much larger than in the case of the smaller de-
tuning. Nevertheless it is clearly realizable that the nega-
tive parts of the Wigner function are significantly reduced
due to the coupling of the field to the environment.

4.2 The difference between the conditional
probabilities

Now the question arises of whether the effects outlined in
the previous section have any consequences on the differ-
ence of the conditional probabilities, i.e. on the quantity
which was actually measured in the experiment. For the
purpose of a numerical simulation one can use the time
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Fig. 4. Wigner func-
tion of the field state
after preparation as
contour plot and as
three dimensional plot
for ∆/2π = 70 kHz,
ϕ0 = 0 and γ =
0. The phase of the
initial state was sup-
posed to be zero (α2 =
3.3).

Fig. 5. Wigner func-
tion of the field state
after preparation cor-
responding to Figure 4
for ∆/2π = 70 kHz,
γ = 1/TR and α2 =
4.2.

Fig. 6. Wigner func-
tion of the field state
after preparation cor-
responding to Figure 4
for ∆/2π = 170 kHz,
γ = 0 and α2 = 3.3.

Fig. 7. Wigner func-
tion of the field state
after preparation cor-
responding to Figure 5
for ∆/2π = 170 kHz,
γ = 1/TR and α2 =
4.2.
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Fig. 8. Mean of the difference of the conditional probabilities
η̄ for ∆/2π = 70 kHz.

Fig. 9. Mean of the difference of the conditional probabilities
η̄ for ∆/2π = 170 kHz.

evolution as it is described by equation (16) or by the real
evolution (12). However, the first one is much easier to
implement. The results are displayed in Figures 8 and 9
where we used once again the parameters of the exper-
iment. The solid lines correspond to the analytical solu-
tion. In Figure 8 this analytical solution is determined for
a phase φ = 0.74 (like in [6,15]) in order to take into ac-
count the effects mentioned in Section 4.1 (in contrast to
Eq. (28), which would lead to an angle φ ≈ 1, see dashed
line in Fig. 8), while in Figure 9 the phase was calculated
according to equation (28). It should be emphasized here
that these lines are exactly the same ones as in Figure 5
of [6], apart from a scaling factor of 0.36 applied to the
y-axis which takes into account some experimental imper-
fections. The diamonds correspond to the case γ = 0, i.e.
relation (17). The triangles are the simulation results for
γ 6= 0. Note that in this case the minimal delay time is
taken to be τC = 80µs. Of course it could be interesting
both experimentally and theoretically to investigate in de-
tail the range of smaller delays, in which case two atoms
are simultaneously in the cavity.

According to Figures 8 and 9 there is a relatively good
agreement between the simulations and the analytically
calculated lines and, therefore, also with the experimen-

tal data. In case of γ = 0 the (small) deviations to the
analytical lines are due to the approximations made in
the description of the Jaynes-Cummings dynamics (see
Sect. 3.2), whereas the effect of approximation (17) leads
to the difference between diamonds and triangles (see also
the related discussion in Sect. 4.4). The conclusion is that
the quantity η̄ is described by the analytical model to a
sufficient degree of accuracy, especially if one compares it
with the data gained from the experiment (which has of
course a finite accuracy). However this does not imply that
any quantity is satisfactorily reproduced by the analytical
model. We are therefore going to take a closer look now
at more sensitive quantities, in particular those describing
decoherence effects during the preparation process.

4.3 Decoherence time and preparation time

In order to examine the effect of decoherence during the
preparation process we consider a single atom which in-
teracts with the field in C, i.e. the process

M1F(t)ρ1ρF, (40)

where ρ1ρF is the state of the atom-field system right be-
fore the atom enters the central cavity,

ρ1ρF =
1
2
(
|e〉〈e|+ |g〉〈g|+ |e〉〈g|+ |g〉〈e|

)
|α〉〈α|. (41)

If one makes use of equation (17) and the approximations
mentioned in Section 3.2, the state would then be prepared
into the entangled cat state (20)

ρ1F =
1
2
(
|e, αeiφ〉〈e, αeiφ|+ |g, αe−iφ〉〈g, αe−iφ|

+ eiφ|e, αeiφ〉〈g, αe−iφ|+ e−iφ|g, αe−iφ〉〈e, αeiφ|
)

(42)

and then evolves according to equation (32) which yields

ρ1F(t) =
1
2

{
|e, αeiφe−

γ
2 t〉〈e, αeiφe−

γ
2 t|

+ |g, αe−iφe−
γ
2 t〉〈g, αe−iφe−

γ
2 t|

+ Γ (t)eiφ|e, αeiφe−
γ
2 t〉〈g, αe−iφe−

γ
2 t|

+ Γ ∗(t)e−iφ|g, αe−iφe−
γ
2 t〉〈e, αeiφe−

γ
2 t|
}
, (43)

where Γ (t) is given by equation (34). Obviously, the initial
state (41) changes into a statistical mixture on a time
scale given by Γ (t), i.e. in this picture the system evolves
first into the (pure) superposition and then decoherence
takes place. In order to quantify this transition one can use
Tr{ρ2

1F} which represents a measure of the “purity” of a
state (often the idempotency defect of linear entropy 1−
Tr{ρ2

1F} is used as well [25]). In the case of expression (43)
this quantity can easily be calculated and is given by

Tr
{
ρ2

1F(t)
}

=
1
2
(
1 + |Γ (t)|2

)
=

1
2

(
1 + e−4|α|2 sin(φ)2(1−e−γt)

)
, (44)
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Fig. 10. Demonstration of the transition from the pure state
to a statistical mixture using the “purity” Tr{ρ2

1F}. The solid
line corresponds to a numerical calculation, the dashed line
to equation (44) and the horizontal line represents its asymp-
totic value. The dashed-dotted line is the time dependent
coupling function (normalized to one). The parameters are
∆/2π = 70 kHz, |α|2 = 3.3 (|α|2 = 4.2 for the solid line),
TR = 160µs and φ = 0.74 (for the analytical line).

Fig. 11. Purity of the field state corresponding to Figure 10
for ∆/2π = 170 kHz. In case of the analytical curve the phase
φ is set to 0.4.

which is a monotonously decreasing function of t with the
asymptotic value

Tr
{
ρ2

1F(∞)
}

=
1
2

(
1 + e−4|α|2 sin(φ)2

)
. (45)

In studies dealing with decoherence it is sometimes im-
plicitly assumed that decoherence takes place only after
the completion of the preparation process. Obviously, this
is an idealized assumption the validity of which must be
investigated. For this purpose the time dependent pu-
rity of the atom-field system is displayed in Figures 10
and 11, once again for the experimental parameters. The
solid lines correspond to the numerical solution of expres-
sion (40) with initial state (41) (at t = 0). The dashed-
dotted lines represent the time dependent coupling func-
tion (normalized to one) and the dashed lines correspond
to the analytical expression (44). In the latter case the ini-
tial time, i.e. the time when the superposition (42) should
be prepared is set equal to t = 80µs, whereas this should
be understood only as an estimation since the two models
are hardly comparable. Obviously, the initial pure state
starts to evolve into a mixture already during the inter-
action of atom and field, leading to an apparently larger

Fig. 12. The “distance” of the numerically calculated density
matrix to the ideal state (42) with φ = 0.74. The detuning is
∆/2π = 70 kHz. The solid line corresponds to a finite atom-
field coupling (TR = 160µs) and the dashed line to a vanishing
coupling. The other parameters are the same as in Figure 10.

decoherence time. This effect would be even more pro-
nounced if the emerging superposition has a more classical
character (i.e. in the case of a larger distance of the field
components in phase space (cf. Figs. 4–7)).

4.4 Hilbert-Schmidt distance to the Schrödinger cat
state

Now the question arises to what extent the state of the
system coincides with the expected state (42) at all. An
appropriate measure for the “distance” of two states is the
Hilbert-Schmidt norm which is given by

‖ A ‖≡
√

Tr {A†A}, (46)

where A is an operator. This expression is of course well-
defined for density operators since 0 ≤ Tr{ρ2} ≤ 1. Fur-
thermore it is easy to show that the distance of two states
fulfills the condition

0 ≤‖ ρ1 − ρ2 ‖≤
√

2 (47)

for arbitrary ρ1 and ρ2. We are now interested in the
distance of the numerically calculated density matrix
ρ(t) = ρ1F,num(t) to the idealized target state ρid = ρ1F

(Eq. (42)). This distance is a measure for the quality of the
approximations made in the analytical model and quanti-
fies to which degree the Schrödinger cat state (20) or (42)
is actually prepared.

The results of the simulations are shown in Figures 12
and 13 for the experimental parameters. The solid lines
correspond to a calculation with finite field-environment
coupling and the dashed lines to a calculation where γ
is set equal to zero, whereby the full Jaynes-Cummings
Hamiltonian is used. As can be seen from the figures the
Hilbert-Schmidt distance does not decrease to zero, nei-
ther with nor without field damping. This means that
in both cases the idealized Schrödinger cat state (42) is
never reached completely. The finite minimal distance of
the dashed line (γ = 0) to the Schrödinger cat can be
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Fig. 13. The “distance” of the numerically calculated density
matrix to the ideal state (42) corresponding to Figure 12. The
detuning here is ∆/2π = 170 kHz.

traced back to nonlinearities in the phase shift and to non-
adiabatic behaviour of the full Jaynes-Cummings dynam-
ics. Note that the distance to the target state is smaller in
the case of the higher detuning since conditions (23, 25)
are more justified here. On the other hand, as can be seen
from the solid line in Figure 12 a finite field damping
(γ 6= 0) leads to decoherence during the preparation stage
of the experiment and, therefore, to a minimal distance
to the Schrödinger cat which is larger than for γ = 0.
We also observe that this effect is negligible for the higher
detuning (Fig. 13). This could be explained by the fact
that in this case the angle between the two phase com-
ponents of the field is smaller and, thus, the decoherence
time becomes larger.

4.5 Conclusion

An important conclusion to be drawn from the example
studied in this paper is that, in general, the suppression of
quantum coherence must be accounted for already during
the initial phase of preparation of the intended target
state. As has been demonstrated the analytical model
provides a sufficiently accurate description of the exper-
imentally measured quantity, namely the difference η̄ of
conditional probabilities. Nevertheless, the numerical
simulations of the complete model revealed that other
quantities, such as the Hilbert-Schmidt distance to the
target state, show significant deviations from the simple
model. One expects that during the preparation of more
macroscopic superpositions than the ones discussed in this
paper decoherence effects during the preparation phase are

strongly enhanced. This fact could lead to important con-
sequences for experimental and theoretical estimations of
decoherence times.
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